7 research outputs found

    The large area detector onboard the eXTP mission

    Get PDF
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance

    Conservative Term Constrained Kalman Filter for Autonomous Orbit Determination

    No full text

    Mission analysis and preliminary spacecraft design of the enhanced x-ray timing and polarimetry observatory

    No full text
    Event: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114442E (13 December 2020).The enhanced X-ray Timing and Polarimetry Observatory (eXTP) is a flagship international collaboration mission led by Chinese Academy of Sciences, with a large contribution from more than 20 European institutes. eXTP mission is designed to study the equation of state of ultra-dense matter under extreme conditions of strong density, gravity and magnetic field. The satellite carries four main instruments, including the Spectroscopy Focusing Array (SFA), the Large Area Detector (LAD), the Polarimetry Focusing array (PFA) and the Wide Field Monitor (WFM), enabling simultaneous spectral-timing-polarimetry studies of celestial sources in the energy range from 0.5-30 keV. The satellite will fly at a near-zero-inclination Low Earth Orbit, and is featured with long-time steady high-precision coaxial pointing, near realtime burst alert distribution, and follow-up maneuver capabilities. This paper describes the primary mission requirements and constraints, and presents an overall mission analysis including orbit analysis, pointing strategy, and board-ground communications, etc. The preliminary design of eXTP satellite is also introduced, including satellite overall configuration, observation modes, avionics architecture and development plan.The mission is led by China, currently supported by Chinese Academy of Sciences and executed under the management of the National Space Science Center of CAS. The project has officially kicked off Phase B in November 2019. After Phase C1, official mission adoption is expected. With Phase C2 and Phase D planned in 2023-2027, the eXTP satellite is targeted to be launched in 2027.Peer reviewe

    The large area detector onboard the eXTP mission

    No full text
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance

    The enhanced x-ray timing and polarimetry mission – eXTP: an update on its scientific cases, mission profile and development status

    No full text
    The enhanced x-ray timing and polarimetry mission (eXTP) is a flagship observatory for x-ray timing, spectroscopy and polarimetry developed by an international consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the universe. eXTP will, in addition, be a powerful x-ray observatory. The mission will continuously monitor the x-ray sky, and will enable multi-wavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022
    corecore